Imprecise Bayesian Networks as Causal Models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Bayesian models as formal models of causal reasoning

knowledge can come in various forms, and it may form complex hierarchies. The most abstract form of knowledge may be called causal principles, which probably include the assumption that causes precede their effects, that nothing happens without a cause, and that causes generate their effect unless prevented by an inhibitory factor (Audi 1995). A fundamental assumption might also be that a manip...

متن کامل

Propagating Imprecise Probabilities in Bayesian Networks

Often experts are incapable of providingèxact' probabilities; likewise, samples on which the probabilities in networks are based must often be small and preliminary. In such cases the probabilities in the networks are imprecise. The imprecision can be handled by second-order probability distributions. It is convenient to use beta or Dirichlet distributions to express the uncertainty about proba...

متن کامل

Causal Interaction in Bayesian Networks

Artificial Intelligence (AI) and Philosophy of Science share a fundamental problem—that of understanding causality. Bayesian network techniques have recently been used by Judea Pearl in a new approach to understanding causality and causal processes (Pearl, 2000). Pearl’s approach has great promise, but needs to be supplemented with an explicit account of causal interaction. Thus far, despite co...

متن کامل

Causal reversibility in Bayesian networks

Causal manipulation theorems proposed by Spirtes et al. and Pearl in the context of directed probabilistic graphs, such as Bayesian networks, oŒer a simple and theoretically sound formalism for predicting the eŒect of manipulation of a system from its causal model. While the theorems are applicable to a wide variety of equilibrium causal models, they do not address the issue of reversible causa...

متن کامل

A software system for causal reasoning in causal Bayesian networks

Knowing the cause and effect is important to researchers who are interested in modeling the effects of actions, and Artificial Intelligence researchers are among them. One commonly used method for modeling cause and effect is graphical model. Bayesian Network is a probabilistic graphical model for representing and reasoning uncertain knowledge. It has been used as a fundamental tool and is beco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information

سال: 2018

ISSN: 2078-2489

DOI: 10.3390/info9090211